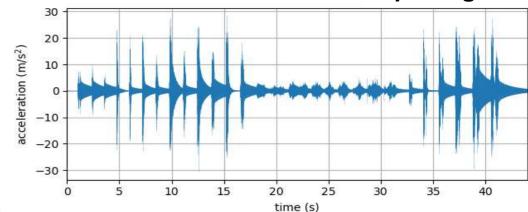
RESOURCE SCHEDULING FOR REAL-TIME MACHINE LEARNING

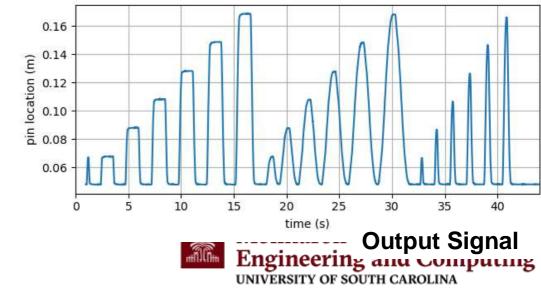
Suyash Vardhan Singh, University of South Carolina, Columbia, South Carolina, USA;
Iftakhar Ahmad, University of South Carolina, Columbia, South Carolina, USA;
Austin R.J. Downey, University of South Carolina, Columbia, South Carolina, USA;
Miaoqing Huang, University of Arkansas, Fayetteville, Arkansas, USA;
David Andrews, University of Arkansas, Fayetteville, Arkansas, USA;
Jason D. Bakos, University of South Carolina, Columbia, South Carolina, USA

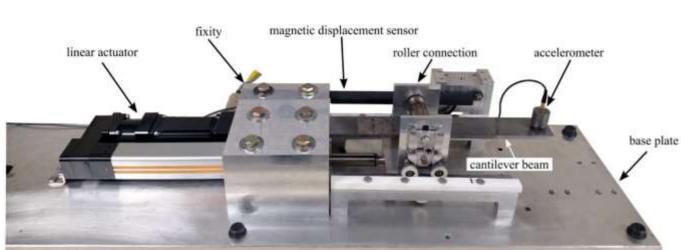
Molinaroli College of Engineering and Computing

MOTIVATION & CHALLENGE

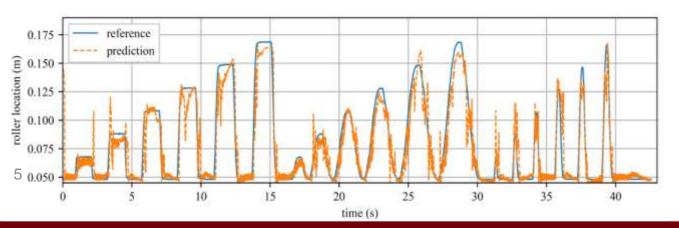
- Challenge: Deploying ML models in real-time high-rate cyberphysical systems.
 - Requires sub-millisecond inference times.
 - Operates under stringent resource constraints on FPGAs.

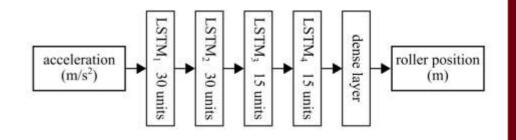

• Deployment Process:

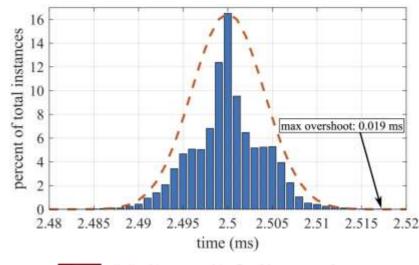

- Optimize neural network configurations.
- Tune hardware parameters for:
 - **Resource efficiency** to fit FPGA limitations.
 - Ultra-low latency performance.


REAL-TIME HIGH-RATE DATASET - DROPBEAR

Input Signal

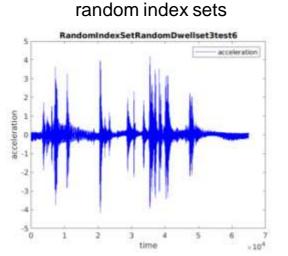

RELATED WORK ON DROPBEAR

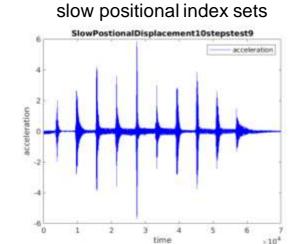

- Accelerating LSTM-based High-Rate Dynamic System Models
 - publication: 33rd International Conference on Field Programmable Logic and Applications (FPL 2023)
 - authors: Ehsan Kabir, Daniel Coble, Joud N. Satme, Austin R.J. Downey, Jason D. Bakos, David Andrews, Miaoqing Huang
- Progress Towards Data-Driven High-Rate Structural State Estimation on Edge Computing Devices
 - publication: In Volume 10 34th Conference on Mechanical Vibration and Sound (VIB). American Society of Mechanical Engineers, aug 2022. doi 10.1115/detc2022-90118.
 - authors: Joud Satme, Daniel Coble, Braden Priddy, Austin R.J. Downey, Jason D. Bakos, Gurcan Comert

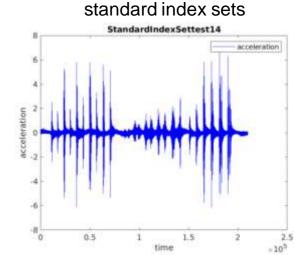


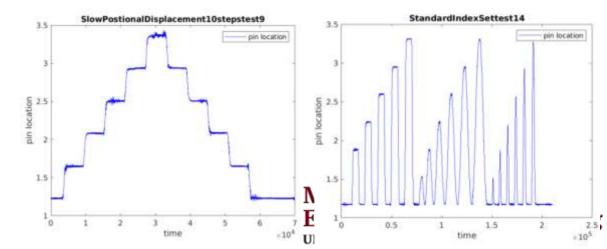
RELATED WORK ON DROPBEAR (CONTD.)

- Rigid structure with single or multiple LSTM cells/layers and one output dense layer
- None deployed to FPGAs yet
- Networks had to be small to run in software on the lowpower CPUs
 - Still performance wasn't good, with max sample rate at 400 Hz
- Same dataset for training and testing
 - o Results may not be generalizable

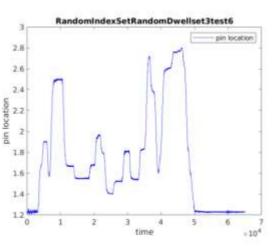




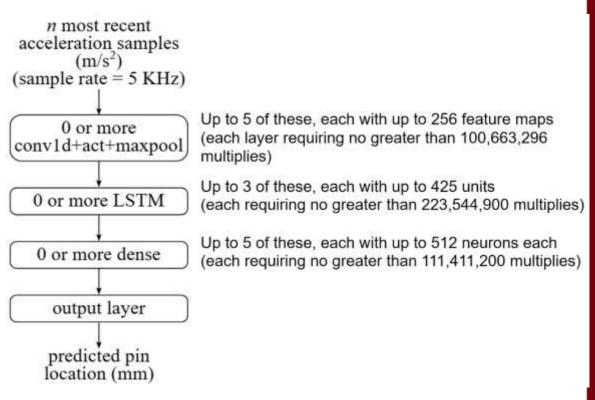



NEW DATASET - DATASET 8

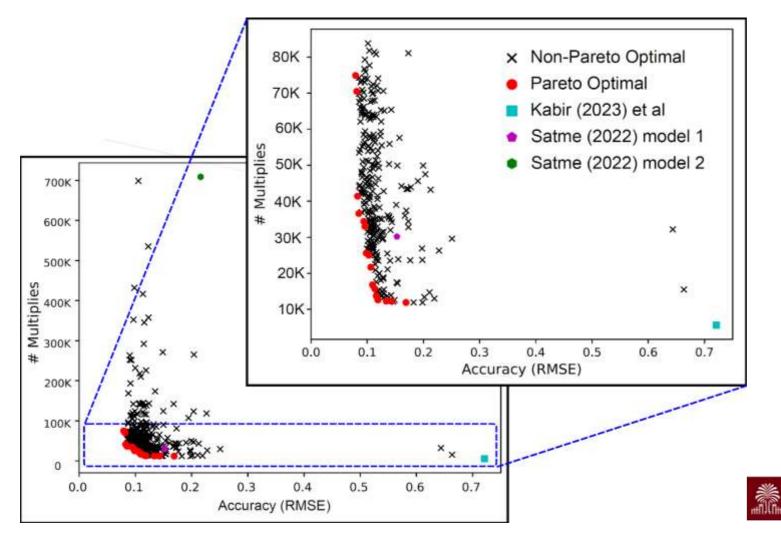
- Sample rate: 5 KHz
- 3 Categories with 150 different experimental runs



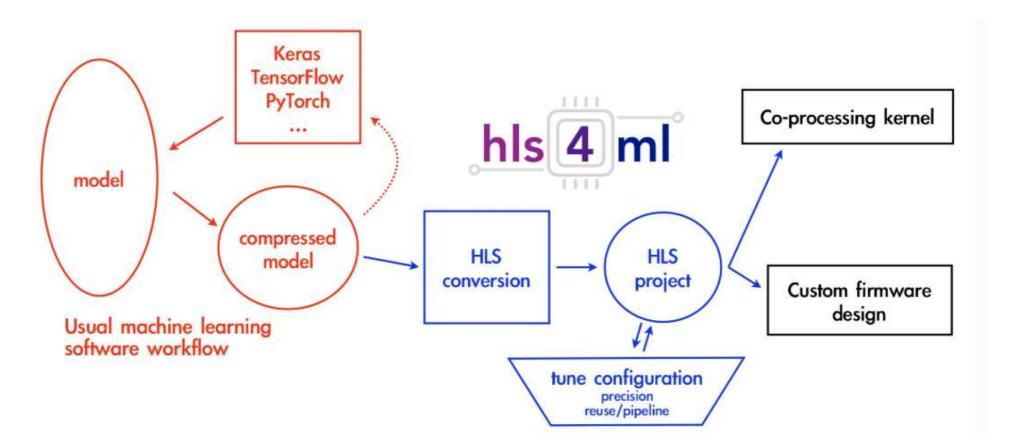
Github Repo:


https://github.com/High-Rate-SHM-Working-Group/Dataset-8-DROPBEAR-Acceleration-vs-Roller-Displacement

OUR APPROACH

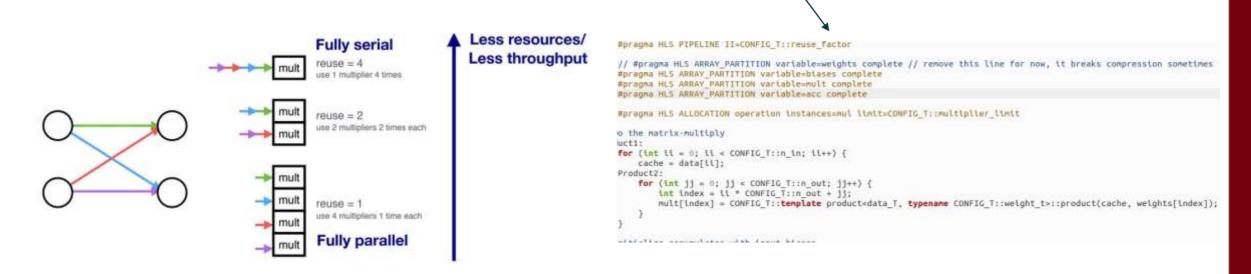

- Random selection of 15 datasets from each of three categories
 - o Training: 12
 - $_{\odot}$ Testing 3
 - $_{\odot}$ Shuffle the data
 - Split training data into a 70-30% ratio for training and validation
- Optuna framework
 - Hyperparamet optimization
 - $_{\odot}$ Multi-objective Bayesian optimization
 - o Objective function
 - § RMSE and Workload (# multiplies)
 - $_{\odot}$ Determine Pareto optimal set

Range of networks


PARETO OPTIMAL NETWORKS

Molinaroli College of Engineering and Computing UNIVERSITY OF SOUTH CAROLINA

8

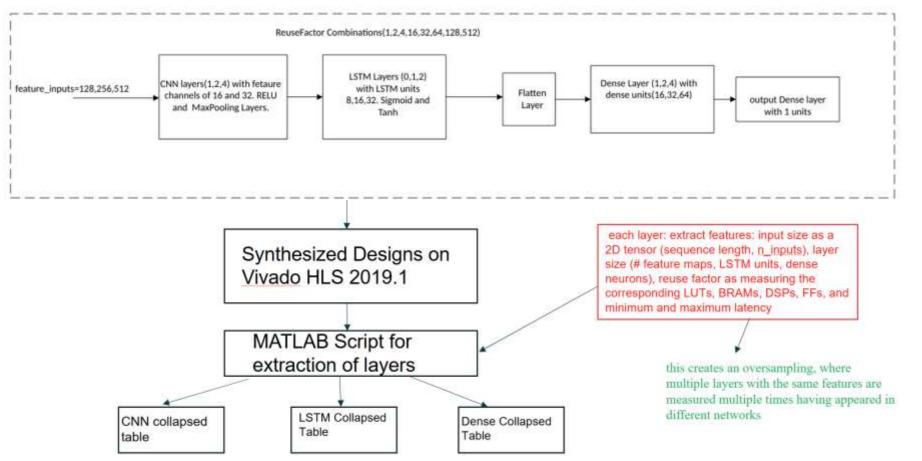

HLS4ML BACKGROUND

REUSE FACTOR

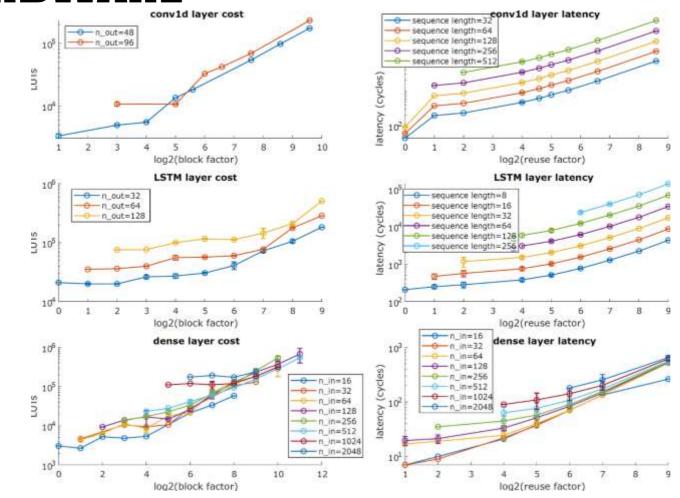
- Latency Strategy
- Resource Strategy

Latency strategy II=1

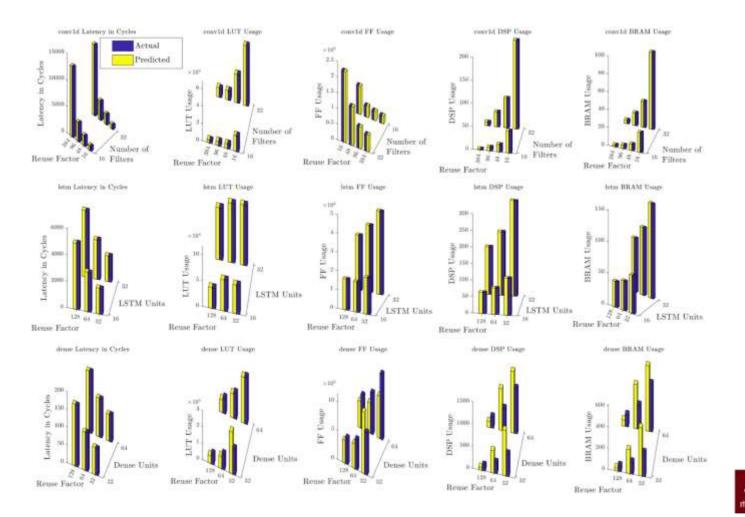
(ReuseFactor=1)



LATENCY STRATEGY : REUSE FACTOR



DATA GENERATION


Dataset:11000 synthesized networks

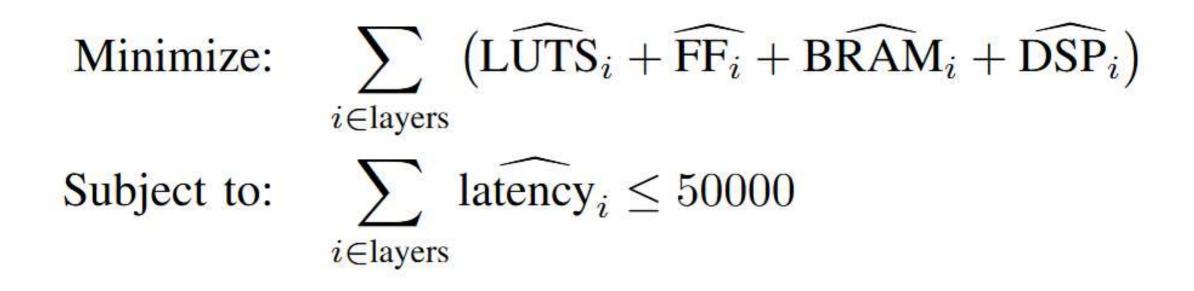
LUT COST AND LATENCY WHEN SCALING SIZE OF HARDWARE

PERFORMANCE AND COST MODEL RESULTS FOR VARIOUS LAYERS

PREDICTION METRICS ON TEST DATA

Layer	Metric	R ² Score	MAPE	RMSE %	Value Range		
	BRAM	0.9976	0.44	6.76	0 - 342		
	LUT	0.9988	2.35	3.95	6.76 0 - 342 3.95 2121.82 - 231963 1.84 1042 - 75576 6.86 1 - 768 0.71 45 - 101910 23.37 16 - 489 11.16 18580.714 - 28684 10.06 7680.33 - 87131 15.54 26 - 1072 6.00 209 - 140545 11.48 0 - 910 15.17 1203 - 1079840 4.89 1269 - 206076 13.54 1 - 2048		
Convolutional	FF	0.9995	0.60	1.84	1042 - 75576		
	DSP	0.9979	1.21	6.86	1 - 768		
	Latency	0.9999	0.09	0.71	45 - 101910		
	BRAM	0.9371	11.98	23.37	16 - 489		
LOTM	LUT	0.9800	1.36	11.16	18580.714 - 286843		
LSTM	FF	0.9826	1.23	10.06	7680.33 - 87131		
	DSP	0.9780	1.65	15.54	26 - 1072		
	Latency	0.9988	2.59	6.00	209 - 140545		
	BRAM	0.9954	0.13	11.48	0 - 910		
			15.17	1203 - 1079840			
Dense	FF	0.9989		1269 - 206076			
	DSP	0.9956	0.12	13.54	11		
	Latency	0.9931	4.20	10.18	7 - 793		

The R² score, also called the **coefficient of determination**, measures how well a regression model explains the variability of the dependent variable (target).


• Formula: $R^2 = 1 - \frac{\text{Sum of Squared Residuals (SSR)}}{\text{Total Sum of Squares (TSS)}}$

- **SSR**: The sum of squared differences between predicted and actual values.
- **TSS**: The sum of squared differences between actual values and their mean.

• Key Points:

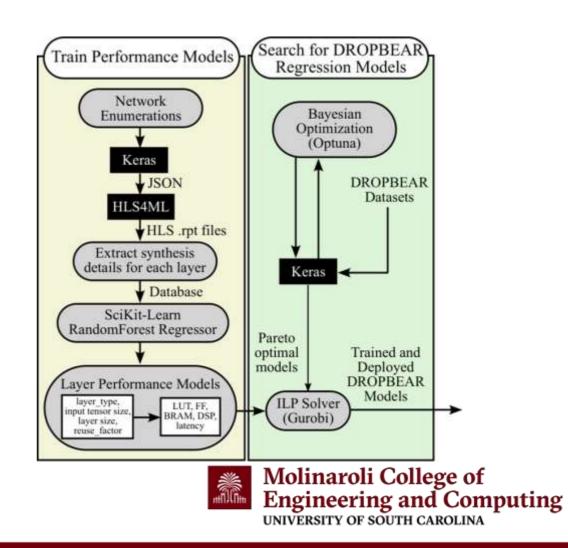
- A higher R² indicates better predictive performance.
- R² is useful for comparing models, but it doesn't guarantee a good fit—always combine it with residual analysis.

OBJECTIVE AND CONSTRAINT FUNCTION FOR N-Torc

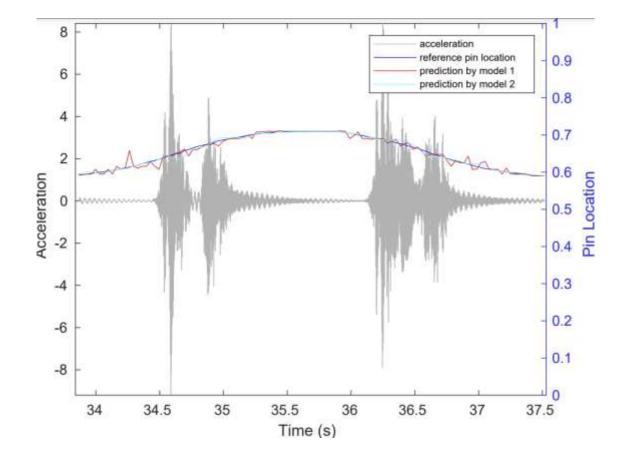
TRAINING AND DEPLOYMENT RESULTS FOR PARETO OPTIMAL NETWORKS

- Network sizes range from 12K total multiplies to 75K which is tiny compared to potential range
- This indicates large potential for improving accuracy in this range but no benefit beyond a 75K model.

Accuracy (RMS error)	Workload (Multiplies)	# LUTS	# DSPs	Latency (µs)	Optimized RF for Each Layer					
0.169	11.9K	18999	10	168.83	48, 768, 384, 768, 384, 64					
0.1433	12.2K	24808	17	169.14	48, 384, 384, 384, 768, 64, 16, 16, 16, 4					
0.1339	12.3K	24807	17	169.14	48, 768, 768, 384, 768, 64, 25, 25, 25, 5					
0.119	12.6K	24807	17	169.14	48, 384, 768, 384, 768, 512, 32, 32, 32, 4					
0.1161	13.7K	26375	16	171.82	48, 768, 768, 768, 768, 384, 162, 162, 18					
0.1134	15.7K	26375	16	171.82	48, 768, 768, 768, 768, 384, 162, 162, 18					
0.1095	16.8K	27125	14	171.82	60, 600, 1200, 300, 1200, 1360, 289, 289, 17					
0.1065	21.7K	63052	40	193.92	78, 2028, 1014, 2028, 2028, 1768, 289, 289, 17					
0.1029	25.0K	63052	40	193.92	90, 2700, 2700, 2700, 2700, 2040, 289, 289, 17					
0.0982	25.6K	30836	24	170.59	24, 192, 384, 768, 384, 1824, 1444, 38					
0.0958	33.0K	44702	30	176.81	24, 192, 384, 384, 768, 4512, 2209, 2209, 2209, 2209, 47					
0.0939	34.4K	63052	40	194.94	123, 5043, 5043, 5043, 5043, 3116, 361, 361, 19					
0.0851	36.6K	80227	58	174.88	24, 192, 768, 768, 384, 5600, 2500, 2500, 2500, 50					
0.0828	41.4K	91708	66	176.96	24, 192, 768, 768, 768, 336, 2916, 2916, 2916, 2916, 54					
0.0813	70.5K	91702	66	176.96	24, 192, 768, 768, 768, 13200, 5625, 5625, 5625, 5625, 75					
0.0792	74.9K	94960	78	193.26	24, 192, 192, 192, 768, 14592, 5776, 5776, 5776, 5776, 76					


N-TORC COMPARISON WITH DIFFERENT DSE

Network	Trials	Stochastic Search			Simulated Annealing (SA)				N-TORC				
		# LUTs	# DSP	Latency (µs)	Search Time (s)	# LUTs	# DSP	Latency (µs)	Search Time (s)	# LUTs	# DSP	Latency (µs)	Search Time (s)
Model 1	1K	137034	209	124	5	120481	159	111	4	94960	78	193	5
	10K	106522	134	189	47	104306	101	162	38	1.10.000			
1.3e11 RF	100K	100054	107	140	413	98289	101	156	382				
permuations	1M	95537	79	192	4573	93046	136	193	3995				
Model 2	1K	445328	746	190	6	434219	720	162	6	374009	459	199	6
	10K	415243	646	198	53	398131	576	196	56				
3.4e11 RF	100K	391543	508	191	565	396019	514	187	567				
permuations	1M	383849	474	190	5406	376416	466	196	4694				



TOOL FLOW OVERVIEW

- First Stage : Bayesian Optimiztion "Optuna"
- Second Stage: Integer Linear Program Solver "Gurobi".

CONCLUSION AND FUTURE WORK

- It supports different data precision on each layer.
- Currently we support 16 bits on each layer
- We are working on incorporating varying precisions into our performance and cost models.

THANKS! Q&A

